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Abstract

Background: Effective screening is a desirable method for the early detection and successful treatment for diabetic
retinopathy, and fundus photography is currently the dominant medium for retinal imaging due to its convenience
and accessibility. Manual screening using fundus photographs has however involved considerable costs for patients,
clinicians and national health systems, which has limited its application particularly in less-developed countries. The
advent of artificial intelligence, and in particular deep learning techniques, has however raised the possibility of
widespread automated screening.

Main text: In this review, we first briefly survey major published advances in retinal analysis using artificial intelligence.
We take care to separately describe standard multiple-field fundus photography, and the newer modalities of ultra-
wide field photography and smartphone-based photography. Finally, we consider several machine learning concepts
that have been particularly relevant to the domain and illustrate their usage with extant works.

Conclusions: In the ophthalmology field, it was demonstrated that deep learning tools for diabetic retinopathy show
clinically acceptable diagnostic performance when using colour retinal fundus images. Artificial intelligence models are
among the most promising solutions to tackle the burden of diabetic retinopathy management in a comprehensive
manner. However, future research is crucial to assess the potential clinical deployment, evaluate the cost-effectiveness
of different DL systems in clinical practice and improve clinical acceptance.
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Background of diabetic patients have underlying DR, this would
A growing global health problem related to diabetes translate to approximately 250 million people suffering
mellitus, one of the world’s fastest growing chronic dis- from DR by the year 2035 [2—4]. To meet this rapidly
eases, is diabetic retinopathy (DR). This condition has evolving and growing crisis, tools that are able to deal
been projected to affect 700 million people across the  with this heavy workload quickly and efficiently are
world within the next two decades [1]. Since one-third paramount in overcoming and tackling this leading
cause of blindness across the world [5, 6].

Early detection of DR via population screening — asso-
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(DL) era, the development and application of such tech-
niques has produced cost-effective tools for DR screen-
ing, [13, 14] and were crucial in the care of patients with
DR and other diseases detectable from the retina such as
glaucoma, age-related macular degeneration and retinop-
athy of prematurity [6, 15-17]. Several international re-
search groups have worked on automatic retinal image
analysis methods to detect, localize, or measure retinal fea-
tures and properties, [18—20] such as automated segmenta-
tion and diameters measurement of retinal vessels [21].

In this review paper, we present some state-of-the-art
DL systems for DR classification using fundus retinal
images. We further aim to explain the machine learning
(ML) techniques and concepts involved alongside a
broad overview of major published works.

Artificial intelligence in retinal analysis

Artificial Intelligence (AI) is an attractive solution for
tackling DR burden. ML is the subfield of AI that fo-
cuses on techniques and algorithms that learn to per-
form tasks without providing specific instructions, and
the subset of ML that is DL has garnered particularly
huge interest in the last decade [5, 22]. DL was initially
inspired by the neuronal connectivity of the brain, allow-
ing it to process large amounts of data and extract
meaningful patterns based on past experiences with the
same input. Moreover, DL improved on prior and shal-
lower artificial neural networks by being able to model
data at various scale abstractions [23]. Specifically, deep
convolutional neural networks (CNN) has been at the
forefront of this new wave of DL in medical analysis due
to its remarkable ability to analyse images and speech
with high accuracy. This has resulted in widespread ap-
plications in multiple medical specialties, including but
not limited to ophthalmology, radiology and pathology
[24—28]. CNNs have found particular success in these
specialties due to their reliance on imaging data such as
fundus photographs, radiological films and pathological
slides [24-27].

The validation of such methods is key for demonstrat-
ing the robustness and applicability of DL technologies
among clinicians, eye care providers, and biomedical
scientists [15, 29]. Large and rich sets of testing data are
required for the development, as well as comprehensive
expert annotations as reference gold standards [30]. To
be effective, a high level of confidence in the agreement
between the computer system and expert human readers
is required. Sensitivity, specificity, accuracy, positive and
negative predictive value, and AUC are common statis-
tical analysis to assess the algorithm’s output validity.
Also, DL-based systems might serve as a promising solu-
tion to reduce human grading workload, and also serve
as a cost-effective screening alternative for both high-
and low-resource countries [31-33].
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Ophthalmology has been at the forefront of this revo-
lution, and DL-based methods are expected to increas-
ingly influence routine clinical patient care in the future
[16, 33]. In particular, Abramoff et al. was the first group
to obtain United States (US) Food and Drug Administra-
tion (FDA) approval for the use of a DL system in the diag-
nosis of DR from retinal images [34]. As for Google Al
Healthcare, Gulshan et al. demonstrated high diagnostic
ability for detecting DR whilst optimizing and minimizing
the size of the training dataset required to achieve these re-
sults [35]. Ting et al. was able to translate this clinically by
demonstrating the high performance of a DL-based system
across multi-ethnic populations, despite not originally being
trained with eyes of differential phenotypical characteristics,
while being subject to non-optimal real-world image cap-
ture settings [26]. DL has also found success in detecting
other ocular diseases from colour fundus photographs such
as age-related macular degeneration, [36] glaucoma [37]
and retinopathy of prematurity [38].

Despite many publications attesting to the robustness, re-
liability and accuracy of these DL systems in the detection
of pathological states, and the support garnered from fed-
eral agencies such as the US FDA, translation into clinical
practice has not been without its challenges [16, 39]. Resist-
ance to implementation has been largely due to the inscrut-
ability of these algorithms [33]. This is due to the ‘black
box’ concept that is evident in DL methods describing the
ambiguity as to how these networks arrive at their conclu-
sion [5]. Although this is a phrase commonly put forth dur-
ing the analysis of the applications of DL systems, it holds
significant weight in the field of medicine, where account-
ability for incorrect decisions weigh heavily, and where the
patients’ and physicians’ trust is necessary for acceptance of
a novel method [16]. That said, there exist methods that
are introduced that help to address this issue, including
saliency heatmaps that provide a visual representation of re-
gions that DL systems consider in making a decision, or
feature attributions where values are assigned to features
and those with higher values suggest areas that are critical
to the prediction by the model [40—43]. Such methods pro-
vide a certain reassurance with DL implementations, and
allow for further translational progress.

Main text

Retina fundus imaging modalities

Fundus imaging is an established modality for retinal
imaging, and the detection of DR from fundus images
has a long and rich history in retinal analysis [44]. Fun-
dus imaging is defined as the process whereby reflected
light is used to form a two dimensional representation of
the three dimensional retina, the semi-transparent, lay-
ered tissue lining the interior of the eye projected onto
an imaging plane [45]. Figure 1 shows different levels of
DR severity from retinal colour fundus images and Fig. 2
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Normal Mild NPDR

PDR DME

Fig. 1 Examples of retinal fundus images

Moderate NPDR

Severe NPDR

Ungradable

provides a comparison of retinal photographs obtained
from different types of devices and capturing views.
Table 1 summarises the major publications in retinal
analysis using DL, separately describing standard
multiple-field colour fundus photography, and the newer
sub-modalities of ultra-wide field photography and

smartphone-based photography. The approaches used
for the various studies are also included in the table.

Standard view
Standard colour fundus photography provides a 30 to
50-degree image which includes the macula and optic

Standard view

Non-referable
Diabetic retinopathy

Referable
diabetic retinopathy

Fig. 2 Comparison of standard view and ultra-wide field retinal images with and without referable diabetic retinopathy

Ultra wide-field
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Table 1 Summary of the major publications in retinal analysis using DL, grouped by standard multiple-field fundus photography,
ultra-wide field photography and smartphone-based photography

Authors and year of publication Approach Training dataset Validation datasets Performance
Standard view photography
Gulshan et al. 2016 [35] Inception-V3 network Public Public EyePACS-1
EyePACS and Messidor-2 EyePACS-1 and Messidor-2 AUC: 0.99

Abramoff et al. 2016 [46]

Ting et al. 2017 [26]

Gargeya et al. 2017 [47]

Abramoff et al. 2018 [34]

Keel et al. 2018 [48]

Kanagasingam et al. 2018 [49]

Gulshan et al. 2019 [50]

AlexNet/VGG network

VGGNet-19 network

Customised CNN network

AlexNet/VGGNet network

Inception-V3 network

Inception-V3 network

Inception-v4 network

(> 120,000 images)

Public
Messidor-2

Proprietary
SiDRP 2010-2013
(> 76,000 images)

Public EyePACS-1
(> 75,000 images)

Public
Messidor-2

Public
LabelMe (~ 59,000)

Public and proprietary
DiaRetDB1, EyePACS,
Australian tele-eye care
(30,000 images)

Public
EyePACS and Messidor-2
(> 144,000 images)

(> 10,000 images)

Public
Messidor-2 (~ 2000 images)

Proprietary
SiDRP 14-15 and 10 others
(> 112,000 images)

Public
EyePACS-1, Messidor-2,E-
Ophtha (> 17,000 images)

Proprietary
Primary care sites
(~900 patients)

Proprietary
Endocrinology outpatient
services (96 patients)

Proprietary
Primary care (~ 200 patients)

Proprietary
Two eye hospitals
(~ 6000 images)

Sensitivity: 90%
Specificity: 98%
Messidor-2
AUC: 0.99
Sensitivity: 87%
Specificity: 99%
AUC: 0.98
Sensitivity: 97%
Specificity: 87%
SiDRP 2014-2015
AUC: 093
Sensitivity: 91%
Specificity: 92%
Others

AUC range: 0.89
to 0.98

Sensitivity range:
92 to 100%

Specificity: 76
to 92%

EyePACS-1
AUC: 0.97
Sensitivity: 94%
Specificity: 96%

Messidor-2 and
E-Ophtha

AUC range: 0.83
to 0.95

Sensitivity range:
74 t0 93%

Specificity range:
87 to 94%

Sensitivity: 87%
Specificity: 91%
Sensitivity: 92%
Specificity: 94%

Sensitivity: 92%

AUC range: 0.97
to 0.98

Sensitivity range:
89 to 92%
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Table 1 Summary of the major publications in retinal analysis using DL, grouped by standard multiple-field fundus photography,
ultra-wide field photography and smartphone-based photography (Continued)

Authors and year of publication Approach

Training dataset

Validation datasets

Performance

Raumviboonsuk et al. 2019 [51] Inception-v4 network

Bellemo et al. 2019 [52] VGGNet/ResNet network

Ultra-wide field photography

Wang et al. 2018 [53] EyeArt software

Nagasawa at al. 2019 [54] VGGNet-16 network

Smartphone-based photography

Rajalakshmi et al. 2018 [55] EyeArt software

Remidio software
Inception-V3 network

Natarajan et al. 2019 [56]

Pegasus software

Public
EyePACS and Messidor-2
(> 120,000 images)

Proprietary
SiDRP 2010-2013
(> 76,000 images)

Proprietary Hospitals
(<400 images)

Public and proprietary
EyePACS and hospitals
(> 52,000 images)

Proprietary
Hospitals and health centers
(~ 30,000 images)

Proprietary
Mobile screening unit
(>4000 images)

Proprietary
Eye clinics (~ 1500 images)

Proprietary
Hospitals (< 400 images)

Proprietary
Tertiary care diabetes hospital
(~ 300 images)

Proprietary
Population-based screening
(>4000 images)

Specificity range:
92 to 95%

AUC: 0.99
Sensitivity: 96.9%
Specificity: 95.3%
AUC: 097
Sensitivity: 92%
Specificity: 89%

AUC: 0.85
Sensitivity: 90%
Specificity: 54%
AUC: 097
Sensitivity: 95%
Specificity: 97%

Sensitivity: 96%
Specificity: 80%

Sensitivity range:
96 to 100%

Specificity range:

Rogers et al. 2019 [57]

79 to 88%
Public and proprietary AUC range: 89
IDRID and research laboratory to 99%

study (> 6000 images) Sensitivity range:

82 to 93%
Specificity range:
82 to 94%

nerve. It is widely used in clinical and trial settings as it
provides relatively good documentation of DR. Multiple
images can be manually overlapped to create a montage
for example, 7 standard 30 degree colour fundus images
may be combined to produce a 75 degree horizontal
field of view [58]. With the addition of mydriasis, the
proportion of ungradable photographs may be reduced
from 26 to 5% (p < 0.001) [59].

Al systems have generally been shown to be able to
accurately detect DR from colour fundus photographs.
During the early development and validation of the
screening performance of DL systems, most scientific
groups evaluated their CNN performances in developed
countries, mostly on the United States population [35,
46, 47]. In 2016, Abramoff et al. developed and en-
hanced a DL system which achieved a AUC of 0.98 and
an achievable sensitivity and specificity of 96.8 and
87.0% in detecting referable DR (defined as moderate
non-proliferative DR or worse, including diabetic

macular oedema) on a publicly available colour fundus
dataset (Messidor-2) [46]. Gulshan et al. also reported
promising diagnostic performances of their DL system
with an AUC of 0.99, and an achievable sensitivity and
specificity of above 96 and 93%, respectively, on two pub-
licly available colour fundus datasets (EyePACS-1 and
Messidor-2) [35]. Several other notable studies were con-
ducted in the same year, as awareness of the promising
abilities of DL in DR screening aroused the interest of the
vision science and medical research communities [60-62].

In 2017, Gargeya and Leng customized a CNN model
that achieved an AUC of 0.97 with 94% sensitivity and
98% specificity, on five-fold cross-validation using the
EyePACS dataset [47]. They further tested it on two ex-
ternal datasets, achieving AUC scores of 0.94 and 0.95,
respectively. Ting et al. then evaluated the performance
of their DL system in detecting DR, using colour fundus
images collected from a Singaporean national DR
screening program, and achieved an AUC of 0.94 with
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an achievable sensitivity and specificity of 91 and 92%
[26]. They further validated the system on 10 additional
multi-ethnic multi-cohort multi-settings datasets with
diabetes and achieved AUCs ranging from 0.89 to 0.98.
Concurrently, interest in DL continued to grow, with
many noteworthy studies published [53, 63—68].

In 2018, IDX-DR software utilizing Alex/VGGNet fea-
tures was validated with an external dataset [69] that
was also approved for use by the US FDA, [34] having
reported a sensitivity of 91% and specificity of 87% in a
real-world clinical setting. Other pilot studies have also
shown the applicability of such technologies in real-
world settings and primary care [48, 49, 70].

There has thus been much sustained interest regarding
the application of DL systems for DR. [71-76] The most
notable research direction in 2019 was arguably towards
assessing the transferability of Al to other less-explored
settings, particularly in developing countries. The Google
AT group extended their works to Thailand and India.
Ruamviboonsuk et al. reported promising sensitivity and
specificity of 97 and 96%, respectively, (AUC of 0.99) in a
national screening program from local hospitals and
health in Thailand [51]. In India, their DL system achieved
a sensitivity and specificity of 89 and 92%, respectively,
(AUC of 0.96) on data from the Aravind Eye Hospital, and
92 and 95%, respectively, (AUC of 0.98) on data from San-
kara Nethralaya [50]. Bellemo et al. reported a promising
sensitivity and specificity (92 and 89%, respectively, with
AUC of 0.97) for diagnosis in Zambia, a low middle-
income African country [52]. In all the above developing
countries, the DL systems’ performance was either super-
ior or comparable to that of human graders. This might
provide an impetus for other countries of similar income
levels to adopt DL systems for their routine national DR
screening programmes [75].

Another notable trend has been the use of a DL system
as an assistive tool for human graders. Sayres et al. investi-
gated the use of heat maps generated by a DL system as a
guidance system for human graders, which led to a signifi-
cant improvement in diagnostic accuracy as compared to
unassisted humans [77]. Keel et al. investigated a method to
visualize the areas where their DL system focused in
diagnosing DR. [78] Other applications concern the predic-
tion of cardiovascular risk factors from colour fundus im-
ages, as well as the estimation of DR prevalence [79, 80]. In
addition, a promising field that might be explored is the use
of DL for the generation of synthetic retinal images to over-
come legal concerns and low disease prevalence [81].

Ultra-wide field

Ultra-wide field imaging allows examination of not only
the central retinal area but also the peripheral zones, for
up to a 200-degree view of the retina [82]; more than
80% of the total retinal surface can be captured in a
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single image. With its wide coverage, ultra-wide field im-
aging is able to detect predominantly peripheral lesions
in eyes with DR, with more than 50% of the graded le-
sions present outside the seven standard Early Treat-
ment Diabetic Retinopathy Study fields [83, 84]. The
presence and increasing extent of predominantly per-
ipheral lesions have been associated with an increased
risk of DR progression. Therefore, the automated ana-
lysis of ultra-wide field images could be of value in
DR screening, given the prognostic importance of
peripheral lesions in predicting the progression to ad-
vanced disease [84].

In 2017, Levenkova et al. developed an algorithm for the
automatic recognition of DR features, including bright
(cotton wool spots and exudates) and dark lesions (microa-
neurysms and blot, dot and flame haemorrhages) in ultra-
wide field images [85]. The algorithm extracted DR fea-
tures from grayscale and colour-composite UWF images,
including intensity, histogram-of-gradient and local binary
patterns. The best AUCs for bright and dark lesions are 94
and 95%, respectively, achieved by a Support Vector Ma-
chine classifier. Wang et al. also evaluated performance of
an automated Al algorithm for detecting referable DR, with
92%/90% sensitivity with 50%/54% specificity achieved for
detecting referral-warranted retinopathy at the patient and
eye levels, respectively [53]. More recently in 2019, Naga-
sawa et al. used ultra-wide field fundus images to detect
treatment-naive proliferative DR. Utilizing 378 photo-
graphic images to train the DL model, a high AUC of 0.97
with promising sensitivity of 94.7% and specificity of 97.2%
was achieved [54].

Smartphone-based

Even though fundus cameras are commonly used in
developed regions for DR screening, due to the high cost
of equipment and lack of adequate number of trained
ophthalmic technicians, deployment in rural areas with
medically underserved patient populations remains lim-
ited [86]. In recent years, several solutions incorporating
additional lens elements to smartphone cameras have
been developed to provide affordable solutions and
scalable approaches to widespread care.

In 2013, Prasanna et al. developed a smartphone-based
decision support system attached to a handheld ophthal-
moscope, for screening DR using sophisticated image
analysis and ML techniques. It achieved an average sen-
sitivity of 86% [87]. After a preliminary study [88], Raja-
lakshmi et al. assessed the role of an AI system for
detection of DR and sight-threatening DR by colour fun-
dus photography taken using smartphone-based retinal
imaging system in 2018, and validated it against grading
by ophthalmologists [55]. The Al system achieved 96%
sensitivity and 80% specificity in detecting any DR, and
99% sensitivity and 80% specificity in detecting sight-
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threatening DR with a kappa agreement of 0.78 and
0.75, respectively. In 2019, Wei et al. presented a real-
time implementation of CNNs as a smartphone app to
provide a low-cost alternative to fundus cameras
equipped with lenses [89]. Natarajan et al. also evaluated
the performance of another offline, smartphone-based
Al system, for the detection of referable DR by using the
images taken by the same smartphone-based retinal im-
aging system on different patient groups [56]. The sensi-
tivity and specificity in diagnosing referable DR were 100
and 88%, respectively, and in diagnosing any DR were 85
and 92%, respectively, compared with ophthalmologist
grading. Finally, Rogers et al. evaluated the performance
of an Al system from images captured by a handheld
portable fundus camera collected during a real-world
clinical practice. Validation on the detection of prolifera-
tive DR resulted in an AUC of 0.92, with an AUC of
0.90 for referable DR. [57]

Machine Learning Techniques & Concepts

State-of-the-art DL systems for DR classification generally
may be understood in terms of the ML techniques and
concepts involved. In particular, contributions by different
groups may be analysed according to the choices made
pertaining to each technique/concept. Here, we provide a
broad overview of common techniques/concepts, and the
trade-offs and considerations involved.

Model architecture

The DL model architecture is a major design choice, as
the evidence on natural images strongly suggests that
the model architecture used affects the classification
performance level that may be attained, on the same
training and validation data [35]. There has been
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constant innovation in terms of general-purpose end-
to-end deep network architectures in recent years [90],
with some notable examples being LeNet, AlexNet,
VGGNet, Inception, ResNet, DenseNet and SENet,
roughly in chronological order of publication (Table 2).
However, for the medical imaging domain in particular,
the declared performance of these architectures on large-
scale natural image classification may not always be the
most relevant, due to other considerations. For one, the
relatively small quantity of medical image data available
may lead to overtraining and/or difficulties with training
to convergence, with more-sophisticated and higher-
capacity models. As such, other than the careful applica-
tion of transfer learning (covered later), older and simpler
architectures may sometimes be favoured for particular
applications. For example, the VGGNet architecture re-
mains exceptionally suited for the extraction of intermedi-
ate features [91], while requiring relatively more weight
parameters than other popular architectures [90].
Moreover, end-to-end classification is not the only para-
digm for DL in DR screening. For instance, a hybrid
approach would be to deploy DL models as low-level de-
tectors that directly target various classes of lesions. Lim
et al. trained models similar to LeNet on spatially-
transformed representations of candidate lesions proposed
by a maximally-stable extremal region detector, [10] while
Abramoff et al’s IDx-DR X2.1 used models inspired by
AlexNet and VGGNet [46]. In these cases, the projected
number and location of true lesions can either be directly
matched against clinical reference standards, or the de-
tector output vectors may be used as the input to a fusion
algorithm that perfoms the final image-level classification.
Another notable consideration for model architectures
would be the amount of computing resources required,

Table 2 Major deep learning model architecture families and characteristics. Note that there may be multiple variants (usually with
different number of layers/parameters) within each architecture family

Architecture family Original year ~ Parameters Layers  Module organization Example application(s)

AlexNet 2012 ~ 60 million 8 Convolutional, Max Pooling Abramoff et al. [34],
Quellec et al. [66]

VGGNet 2014 ~ 180 million 19 Convolutional, Max Pooling Abramoff et al. [34],
Quellec et al. [66],
Ting et al. [26],
Gargeya et al. [47],
Bellemo et al. [52]

GoogleNet (also Inception v1) 2015 ~ 7 million 22 Inception, Pool+Concat Takahashi et al. [63]

Inception (v3) 2015 ~ 24 million 42 Inception, Pool+Concat Gulshan et al. [35],
Krause et al. [30]

ResNet 2016 ~ 60 million 152 Convolutional, Skip Connections  Bellemo et al. [52]

Inception-ResNet (v2) 2016 ~ 56 million 164 Residual Inception -

SqueezeNet 2016 ~ 1.2 million(before pruning) 14 1 x 1 Convolutional, -

Squeeze & Expand Layers
ResNeXt 2017 ~ 25 million 50 Convolutional (Grouped) -
DenseNet 2017 ~ 20 million 201 Dense, Transition -
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which is relevant for deployment on consumer devices
such as smartphones, embedded systems, and on possibly
less-powerful hardware in under-resourced regions. In
general, the fewer the number of weight parameters in-
volved in the model architecture, the quicker the infer-
ence, ceteris paribus. If the inference time is sufficiently
quick, real-time analysis further becomes possible [92]. To
this end, lightweight model architectures such as Mobile-
Net [93] and ShuffleNet [94] have been designed for de-
vices with limited computing power. Alternatively, model
compression through pruning and parameter quantization
may be done [95]. Given the medical implications of DR
screening, however, any such trade-offs of performance
for speed may need to be carefully considered.

Ensembling

Ensembling involves the combination of multiple inde-
pendent ML classifier models, to produce a final classifier
model that generally performs better than any of its con-
stituent models. With DL models, ensembling is com-
monly and easily implemented by training multiple
models — not necessarily of the same network architecture
or inputs — separately, and then combining the outputs of
these models during inference. Although regularization
techniques such as dropout may be utilized during model
training as an approximation to ensembling [96], models
trained in this way nonetheless yield further performance
gains when ensembled, in practice.
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The number of models involved in the final ensemble is a
trade-off between training/inference time and performance.
Generally, the larger the number of independent models
used, the better the performance, but with diminishing
returns. For example, Gulshan et al. used an ensemble of
ten Inception-v3 models [35], Ting et al. used an ensemble
of two VGGNet-based models, although with differently
pre-processed inputs [26], which was further extended with
a ResNet model in Bellemo et al. [52]

Various methods have been employed for integrating
the individual model outputs within an ensemble. Perhaps
the most straightforward would be to take a linear average
over these predictions, as was done for Gulshan et al. [35]
and Ting et al. [26] More complex possibilities would in-
clude weighted ensembles [25] and the training of a fur-
ther classifier model over the ensemble output values.

Transfer learning

Transfer learning is a method of adapting a model
trained on some domain, to another domain (Fig. 3)
[97]. For DL models in DR screening, the most promin-
ent application of transfer learning has perhaps been in
the finetuning of models that have already been pre-
trained on another classification task, such as ImageNet
[98]. The reasoning behind such transfer learning is that
the retinal image domain and the natural image domain
share some similarities, especially for universal lower-
level features such as corners and edges. Therefore, the

cat man fish

dog

DRO DR1

DR3 DR4

3x3 conv, 256 |

=

Input Data
(General Task)

f Layers with
parameters
e conTv, o learnt from
[ 3x3conv, 256 | new medical
¥ task
| 3x3 cony, 256 |
A
Layers with
frozen
parameters

Fig. 3 Basic transfer learning method. A deep learning model is first trained on some general task. This trained model is then trained on the
actual target medical task, possibly with the parameters for earlier layers representing low-level features frozen

Input Data
(Medical Task)
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parameter weights from a natural image classification
task should then serve as a good initialization for retinal
image classification.

A major consideration for transfer learning with pre-
trained weights would be the policy by which these
pretrained weights are finetuned with new retinal data. One
possible choice would be to consider the pretrained weights
merely as an initialization and proceed with training as per
normal, allowing all weight values to be updated. At the
other extreme, all pretrained weights are fixed, and the pre-
trained model is effectively employed as a feature extractor
with only the output layer replaced, possibly by another
classifier such as a random forest [47] or support vector
machine [99]. Otherwise, the weights of any number of
layers within the model architecture may be fixed, with the
remainder updated; if so, it is generally the layers corre-
sponding to lower-level features that are fixed. A previous
survey on transfer learning in the medical domain by Taj-
bakhsh et al. suggests that although the use of pretrained
weights made DL models more robust to the size of train-
ing sets, the optimal selection of layers to fix depends on
the task at hand and has to be empirically determined [98].

Weakly supervised and active learning

A commonly encountered obstacle to training DL models
for DR classification is a lack of annotated image data, par-
ticularly at the lesion level, since such detailed annotation
was not typically required in clinical screening workflows.
This made gathering sufficient lesion-level ground truth
for hybrid DL implementations challenging. Although
coarse-grained image-level grades were more widely avail-
able, it remained common to have large quantities of un-
labelled retinal images for which no grades from human
experts were available [100].

In such situations, weakly-supervised transductive
learning becomes applicable. In transductive learning, an
initial model trained on the labelled training data is used
to classify the unlabelled training data. The originally-
unlabelled training data now also becomes labelled, and
may be used together with the originally-labelled train-
ing data to train an improved bootstrapped model [101].

Whether or not such transductive learning is employed, it
is advisable to continually refine the trained model through
active learning. Active learning presumes the presence of an
oracle that can provide accurate answers to queries, which
in the case of DR screening would be a human expert. How-
ever, there is an opportunity cost to consulting the oracle.
As such, the goal of active learning is to intelligently select
the most useful images for which to consult the oracle on,
in the sense that the availability of accurate labels for these
images would improve model performance to the greatest
extent. One possible approach would be to select images for
which the model is most uncertain [75].
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Label Modelling

Another manifestation of weakly-supervised learning is
the presence of imperfect or noisy labels. The presence of
such imperfect labels is largely unavoidable in DR screen-
ing, with qualified human graders sometimes disagreeing
with each other — or even themselves, from a previous ses-
sion. Inter-grader kappa scores typically range from 0.40
to 0.65 in DR grading [102], and the implied disagreement
may be resolved by majority decision, discussion between
the graders, or external adjudication. Krause et al. con-
clude that rigorous adjudication of DR ground truth is im-
portant in developing DR models, since it allows for the
principled correction of subtle errors from image artefacts
and missed microaneurysms [30].

A further development by Guan et al. has been the
modelling of individual graders with independent DL
models, following the observation that the labelling of
large DR datasets usually involves a large number of
human graders, each of whom however grade only a
relatively small subset of the dataset, with each image
moreover also being graded by only a small subset of the
human graders [102]. They found that modelling each
human grader separately and averaging the predictions
of these separate DL models in a weighted ensemble
produced better performance than modelling the ex-
pected prediction of the average grader.

Joint Learning

DR may co-occur with other related eye diseases, and
there is as such motivation to model its features to-
gether with those of other eye diseases. This joint or
multitask learning involves training a DL model for
multiple tasks simultaneously, and may induce benefi-
cial regularization of intermediate representations, thus
reducing overfitting [103]. Gonzilez-Gonzalo et al
attempted the joint learning of referable DR and age-
related macular degeneration, and concluded that a
jointly-trained DL model could perform comparably to
human graders [104].

Joint learning may also be implemented for improving
mid-level representations, in terms of optimizing for vis-
ual encodings and the final binary classifier at the same
time, for multiple-instance learning [105]. This multiple-
instance learning framework also allows for a degree of
model interpretability by allowing the class of encoding
instances to be explicitly considered during training. In
this case, two neural networks are utilized to generate
the mid-level representation encodings.

Hyperparameter search & optimization

Other than the model weight parameters themselves, DL
models involve a large number of hyperparameters, such
as the initial learning rate, the learning rate decay sched-
ule, the input batch size, etc. For DR screening
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applications, these hyperparameter settings are often
borrowed directly from existing models, and whether
these settings are the most appropriate for the DR
screening domain may not be systematically explored.
Sahlsten et al. is an example of work that investigates
the image resolution parameter in detail [106].

The optimization of multiple hyperparameters is non-
trivial, due to the number of hyperparameter combina-
tions increasing exponentially with the number of indi-
vidual hyperparameters. Although grid search over the
hyperparameter space is commonly attempted, when the
number of relevant hyperparameters is relatively small,
random search [107] and sequential optimization algo-
rithms [108] may also be attempted to more thoroughly
examine possible model performance.

Robustness

Although DL models may be trained and validated on
large datasets, it is difficult to be certain whether the data-
sets used can fully capture the potential variability of ret-
inal images that may be encountered in future use.
Differences may arise in the image acquisition process or
population demographics that can render a trained DL
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model less effective on new data. Lim et al. demonstrated
that the uncertainty of a DL model could be estimated by
the standard deviation and entropy of the mean predictive
distribution, on the stochastic batch normalization layers
of a ResNet architecture, and that prediction error is cor-
related with high estimated uncertainty [75].

Explainability

A persistent obstacle against the uptake of Al systems in
DR screening has been a lack of surface explainability
[16]. In fact, the progression from handcrafted features
and multi-stage classification to end-to-end deep learn-
ing has been accompanied by a concurrent loss of inter-
pretability, in that humans could no longer examine the
reasoning of the classifier, unlike previously where an
image kernel could be inspected to determine why it had
not matched with a microaneurysm, for instance.

This lack of interpretability has been mitigated some-
what through the development of various methods to
extract saliency heatmaps from DL models, such as
Grad-CAM [42] and integrated gradients [43]. These sa-
liency heatmaps attempt to display the contribution of
each image pixel or region to the final classification. This

Al black box

Input (retina image)

Heatmap

Open Al black box

Output (diagnosis) Clinical decision

|

|

|

PDR I
Severe NPDR V Referable DR |
Moderate NPDR @ |
|

Mild NPDR |
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L) 0):S Refer to |
|

eye center |

Fig. 4 Al flow for diabetic retinopathy. In the diabetic retinopathy screening domain, the Al implementation allows automated diagnosis and
subsequent clinical decisions. In the example presented in the figure, the Al system would recommend referring the patient to the eye clinic
because of the referable diagnosis for diabetic retinopathy. To allow researchers and clinicians determine how the Al model makes the decision,
the heatmap attempts to display the contribution of each image pixel or region, to the final classification. Heatmaps open the ‘black box’
highlighting the areas in which the Al system is focusing on to build trust among practitioners and patients. Abbreviations: DR; diabetic
retinopathy; NPDR: non-proliferative diabetic retinopathy; PDR: proliferative diabetic retinopathy
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allows researchers to retrospectively determine whether
their DL models are making their decisions based on the
expected image features, which in the DR screening do-
main would be various lesions such as microaneurysms,
haemorrhages and hard exudates (Fig. 4).

A desire for greater interpretability has also seen
renewed interest in hybrid methods that expose the
intermediate goals of the classifier [109]. For example,
Yang et al. implemented a two-stage DL model, which
first classifies overlapping grid patches as containing
lesions or not. The resulting weighted lesion map is
then used as input to a second global DL model, to
predict the image-level DR severity [110]. Wang et al.
introduced a Zoom-in-Net architecture that purports
to mimic the attentional behaviour of human graders,
by allowing for suspicious regions to be focused on
through additional learning on feature maps from the
main network [111].

Conclusions

In this paper, we provided a broad overview of the major
works and technical implementations involving DL tech-
niques for DR diagnosis as an alternative tool for screen-
ing programmes. It emerged that, in the ophthalmology
field, DL tools for DR show clinically acceptable diagnostic
performance when using colour retinal fundus images.
DL-based Al models are among the most promising solu-
tions to tackle the burden of DR management in a com-
prehensive manner. However, future research is crucial to
assess the potential clinical deployment, evaluate the cost-
effectiveness of different DL systems in the clinical prac-
tice and improve clinical acceptance.
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